Langsung ke konten utama

Matematika kelas 9 tentang parabola

Matematika kelas 9 tentang parabola

Grafik Persamaan Fungsi Kuadrat / Parabola

A. Bentuk Umum dan Sifat Parabola
Kurva fungsi kuadrat y = f( x ) = ax2 + bx + c, a tidak sama dengan nol ( 0 ) berbentuk parabola.
Jika nilai a (+) maka parabola terbuka ke atas dan mempunyai nilai ekstrem minimum

Jika nilai a ( - ) maka parabola terbuka ke bawah dan mempunyai nilai ekstrem maksimum

Koordinat titik puncak / titik ekstrem / titik stationer / titik balik parabola adalah ( Xp , Yp )
dengan :











  
Xp = absis ( x ) titik puncak = sumbu simetri = absis ( x ) saat mencapai nilai maksimum/minimum
Yp = ordinat ( y ) titik puncak = nilai ekstrem/nilai stationer/nilai maksimum/nilai minimum



B. Sketsa Grafik Fungsi Kuadrat / Parabola

Langkah-langkah dalam membuat sketsa grafik fungsi kuadrat/parabola  = ax2 + bx + c ) :

1. menentukan titik potong grafik dengan sumbu x → y = 0


kemudian difaktorkan sehingga diperoleh akar-akarnya yaitu x1 dan x2 . jika kesusahan dalam memfaktorkan coba di cek dulu nilai D nya....

jika D < 0 maka fungsi tersebut memang tidak mempunyai akar-akar persamaan fungsi kuadrat sehingga sketsa grafik fungsi kuadrat tidak memotong sumbu x

jika D > 0 maka fungsi tersebut mempunyai akar-akar persamaan fungsi kuadrat namun kita kesulitan dalam menentukannya... bisa jadi karena angkanya yang susah difaktorkan atau faktornya dalam bentuk desimal. Akar-akarnya dapat kita cari dengan rumus abc :



setelah kita mendapatkan nilai x1 dan x2maka titik potong grafik fungsi kuadrat dengan sumbu x :
( x1 , 0 ) dan ( x2 , 0 ) 

2. menentukan titik potong grafik dengan sumbu y → x = 0karena x = 0 maka y = cdan titik potong dengan sumbu y = ( 0 , c )

3. menentukan sumbu simetri ( xp ) dan titik ekstrem ( yp )
dari penentuan sumbu simetri ( xp ) dan nilai eksterm   ( yp ) diperoleh titik puncak grafik fungsi kuadrat/parabola : ( Xp , Yp )


Posisi grafik fungsi kuadrat/parabola terhadap sumbu x
mengulang pembahasan mengenai titik potong sumbu x → y = 0 ada 3 kemungkinan :

D > 0 → grafik fungsi kuadrat memotong sumbu x di dua titik
D = 0 → grafik fungsi kuadrat menyinggung sumbu x di satu titik
D < 0 → grafik fungsi kuadrat tidak memotong sumbu x

dengan menggabungkan dengan nilai a nya dapat dibuat sketsa grafik fungsi kuadrat/parabola :



C. Persamaan Fungsi Kuadrat / Parabola

1. Diketahui tiga titik sembarang

Rumus : y =  ax2 + bx + c 

nilai a, b dan c ditentukan dengan eliminasi.



2. Parabola memotong sumbu x di dua titik ( x1 , 0 )dan ( x2 , 0 ) dan melalui satu titik sembarang.


 Rumus : y = a ( x - x1 ).( x - x2 )

nilai a ditentukan dengan memasukkan titik sembarang tersebut ke x dan y.



3. Parabola menyinggung sumbu x di satu titik ( x1 , 0 ) dan melalui satu titik sembarang.

Rumus : y = a ( x - x1 )2 
nilai a ditentukan dengan memasukkan titik sembarang tersebut ke x dan y.



4. Parabola melalui titik puncak xp yp ) dan melalui satu titik sembarang.

Rumus : y = a ( x - xp )2 + yp
nilai a ditentukan dengan memasukkan titik sembarang tersebut ke x dan y.




D. Hubungan Kurva Persamaan Kuadrat / Parabola dan Persamaan Garis Lurus


Komentar

Postingan populer dari blog ini

cara menyelesaikan soal tentang vektor

Cara menyelesaikan soal tentang vektor Berikut ini cara cepat tuntaskan soal vektor fisika.Soal berikut ini adalah mengenai penjumlahan vektor,resultan vektor,selisih dalam vektor,perkalian vektor,perklaian cros dan dot vektor,metode poligon,metode analaisi untuk menjumlahkan atau menglaikan vektor satuan.Berikut soal dan pembahasan vektor. 1.Diberikan dua buah vektor gaya yang sama besar masing-masing vektor besarnya adalah 10 Newton seperti gambar berikut. arah gaya dalam vektor Jika sudut yang terbentuk antara kedua vektor adalah 60°, tentukan besar (nilai) resultan kedua vektor! Pembahasan soal: Untuk mencari dua buah vektor yang telah di kasi tahu sudut nya dalam soal vektor maka kita gunaklan rumus seperti berikut ini. rumus resultan vektor Dengan F1 = 10 N, F2 = 10 N, α adalah sudut antara kedua vektor (α = 60°). dan R adalah besar resultan kedua vektor. Sehingga nanti menjadi, 2.Dua buah vektor masing-masing F1 = 15 satuan dan F2 = 10 satuan mengapit sudut 60.

soal dan pembahasan kimia teori atom

Soal dan bahasan kimia bab teori atom   Pokok teori atom thomson dititikberatkan pada . . . . A. Atom terdiri dari elektron - elektron B. Elektron sebagai penyusun utama atom C. Atom sebagai bola masif yang hanya berisi elektron D. Atom sebagai bola masif bermuatan positif yang di dalamnya tersebar elektron sehingga keseluruhannya bersifat netral E. proton dan elektron adalah bagian penyusun atom yang keduanya saling meniadakan. Pembahasan : Teori atom Thomson Atom terdiri dar inti bermuatan positif dan elektron yang menyebar rata di permuakaan atom. Model atom thomson dikenal juga dengan model atom roti kismis. Jawaban : D Soal                   Teori yang menjadi dasar munculnya teori atom modern adalah . . . . A. spektrum atom hidrogen B. tabung sinar katode C. penghamburan sinar alfa D. adanya sinar saluran E. mekanika gelombang Pembahasan : Dasar munculnya teori atom modern adalah adanya teori mekanika gelombang yang dikemukakan oleh Heisenberg, Shcrodinger