Langsung ke konten utama

logaritma kelas 10

Logaritma kelas X

A. Definisi Logaritma
Logaritma adalah operasi matematika yang merupakan invers (kebalikan) dari eksponen atau pemangkatan.
Atau dengan pengertian lain, bentuk eksponen 1 bila dinyatakan dengan notasi logaritma adalah 2.gif.
dengan :
a = basis atau bilangan pokok
b = hasil atau range logaritma
c = numerus atau domain logaritma.
Sebagai catatan, bahwa penulisan 3.gif sama artinya dengan 4.
B. Sifat – sifat Logaritma
Jika a>0, a ≠ 1, m ≠ 1, b>0 dan c>0, maka berlaku :
Sifat Logaritma.jpg
Contoh Soal :
1. Diketahui ^{ 2 }log5=p dan ^{ 5 }log3=p. Nilai ^{ 3 }log10 dinyatakan dalam p dan q adalah … (UN SMA 2013)
Penyelesaian :
Logaritma UN 2013.gif
2. Hasil dari 8.gif adalah …   (UN SMA 2012)
Penyelesaian :
5.gif
3. \frac { { (^{ 3 }\log36) }^{ 2 }-{ (^{ 3 }\log 4) }^{ 2 } }{ (^{ 3 }\log \sqrt { 12 } ) }  = …       (Sipenmaru 1987)
Penyelesaian :
Ingat sifat aljabar
7.gif
Maka gunakan sifat tersebut untuk menyelesaikan pembilangnya.
Jadi,
6.gif

Contoh Soal Logaritma dan Pembahasan

Contoh Soal Logaritma 1

Diketahui 3log 5 = x dan 3log 7 = y. maka, nilai dari 3log 245 1/2 adalah … ?            (EBTANAS ’98)
Pembahasan 1
3log 245 ½ = 3log (5 x 49) ½
3log 245 ½ = 3log ((5) ½ x (49) ½)
3log 245 ½ = 3log (5) ½ + 3log (72½
3log 245 ½ = \frac{1}{2} ( 3log 5 + 3log 7)
3log 245 ½ = \frac{1}{2} (x + y)
Jadi, nilai dari 3log 245 1/2 adalah \frac{1}{2} (x + y).

Contoh Soal Logaritma 2

Jika b = a4, nilai a dan b positif, maka nilai alog b – blog a adalah …?              (UMPTN ’97)
Pembahasan 2
Diketahui bahwa b = a4, maka dapat disubstitusi kedalam perhitungan:
alog b – blog a = alog a4  – ^{a^4} log a
alog b – blog a = 4 (alog a) – \frac{1}{4}alog a)
alog b – blog a = 4 – \frac{1}{4}
alog b – blog a = 3 \frac{3}{4}
Jadi, nilai dari alog b – blog a pada soal tersebut adalah 3 \frac{3}{4}.

alog x = n <-> x = an
Pembahasan dari rumus diatas dapat dijabarkan sebagai berikut:
a = bilangan pokok atau basis, a>0 ; a ≠1
x = yang dicari nilai logaritmanya, x>1
n = hasil logaritma
Berdasarkan pernyataan tersebut, sekarang kita mendapatkan bentuk logaritmanya seperti ini:
1. 2x = 5 ↔ x = 2log 5
2. 3y = 8 ↔ y = 3log 8
3, 5z = 3 ↔ z = 5log 3
Ternyata, logaritma ini juga memiliki beberapa sifat diantaranya:
Contoh 5 Persamaan Logaritma

1. Hitunglah nilai – nilai logaritma berikut :
a. 6log 9 + 6log 8 – 6log 2
b. 9log 135 – 9log 5
Jawab :
Berdasarkan sifat logaritma glog (axb) = glog a + glog b dan glog (a:b) = glog a – glog b maka
a. 6log 9 + 6log 8 – 6log 2
6log (9.8 /2)
6log 36
6log 6²
= 2 6log 6                        (berdasarkan sifat  glog an = n glog a )
=2 . 1
=2
b.  9log 135 – 9log 5
=  9log ( 135 / 5 )
=  9log 27
=3^2log 33
= 3/2 3log 3                          ( berdasarkan sifat  g^nlog am = m/n glog a )
= 3/2
2. Jika nilai log 3= a dan log 5 = b, tentukan nilai
a. log 75
b. log 1.500
Jawab
Berdasarkan sifat logaritma glog (axb) = glog a + glog b
a. log 75 = log (3 × 5²)
                  = log 3 + log 5²
                  = a + 2b
b. log 1500 = log ( 3 × 5 × 100 )
                       = log 3 + log 5 + log 100
                       = a + b + log 10²
                       = a + b + 2

1.log1
Penyelesaian:log11log111
2.log2
Penyelesaian:log22
3.log3
Penyelesaian:log33
4.log4
Penyelesaian:log44
5.log5
Penyelesaian:log55
6.log6
Penyelesaian:log66

Contoh Soal Logaritma 1

Diketahui 3log 5 = x dan 3log 7 = y. maka, nilai dari 3log 245 1/2 adalah … ?            (EBTANAS ’98)
Pembahasan 1
3log 245 ½ = 3log (5 x 49) ½
3log 245 ½ = 3log ((5) ½ x (49) ½)
3log 245 ½ = 3log (5) ½ + 3log (72½
3log 245 ½ = \frac{1}{2} ( 3log 5 + 3log 7)
3log 245 ½ = \frac{1}{2} (x + y)
Jadi, nilai dari 3log 245 1/2 adalah \frac{1}{2} (x + y).

Contoh Soal Logaritma 2

Jika b = a4, nilai a dan b positif, maka nilai alog b – blog a adalah …?              (UMPTN ’97)
Pembahasan 2
Diketahui bahwa b = a4, maka dapat disubstitusi kedalam perhitungan:
alog b – blog a = alog a4  – ^{a^4} log a
alog b – blog a = 4 (alog a) – \frac{1}{4}alog a)
alog b – blog a = 4 – \frac{1}{4}
alog b – blog a = 3 \frac{3}{4}
Jadi, nilai dari alog b – blog a pada soal tersebut adalah 3 \frac{3}{4}.

Contoh Soal
Sederhanakanlah:
  1. 2 log 25  3 log 5 + log 20
  2. ½ 2log 82  3 2log 3 + 2log 48
Jawab
  1. 2 log 25  3 log 5 + log 20
= log 252  log 53 + log 20
= log (252/53) + log 20
= log 5 + log 20
= log (5 × 20)
= log 100 = 2
  1. ½ 2log 82  3 2log 3 + 2log 48
= 2log 82½  2log 33 + 2log 48
= 2log (9/27) + 2log 48
= 2log 1/3 + 2log 48
= 2log (1/3 × 48)
= 2log 16 = 4


Komentar

Postingan populer dari blog ini

soal dan pembahasan kimia teori atom

Soal dan bahasan kimia bab teori atom   Pokok teori atom thomson dititikberatkan pada . . . . A. Atom terdiri dari elektron - elektron B. Elektron sebagai penyusun utama atom C. Atom sebagai bola masif yang hanya berisi elektron D. Atom sebagai bola masif bermuatan positif yang di dalamnya tersebar elektron sehingga keseluruhannya bersifat netral E. proton dan elektron adalah bagian penyusun atom yang keduanya saling meniadakan. Pembahasan : Teori atom Thomson Atom terdiri dar inti bermuatan positif dan elektron yang menyebar rata di permuakaan atom. Model atom thomson dikenal juga dengan model atom roti kismis. Jawaban : D Soal                   Teori yang menjadi dasar munculnya teori atom modern adalah . . . . A. spektrum atom hidrogen B. tabung sinar katode C. penghamburan sinar alfa D. adanya sinar saluran E. mekanika gelombang Pembahasan : Dasar munculnya teori atom modern adalah adanya teori mekanika g...

persamaan dan pertidaksamaan kuadrat

Persamaan & pertidak samaan kuadrat January 17, 2017 1.    Batas-batas pertidaksamaan 5x – 7 > 13 adalah... a.    x < -4 b.    x > 4 c.    x > -4 d.    x < 4 e.    -4 < x < 4 Pembahasan: 5x – 7 > 13 5x > 20 x > 4 Jawaban: B 2.    Semua bilangan positif x yang memenuhi pertidaksamaan √x < 2x jika... a.    x < ¼ b.    x < 4 c.    x > ¼ d.    x > 4 e.    x ≤ 4 Pembahasan:        x(1 – 4x) < 0        x = 0 dan x = ¼ Karena x harus bilangan positif, maka nilai x yang memenuhi x > ¼ Jawaban: C 3.    Bentuk yang setara (ekuivalen) dengan |4x-5|<13 adalah ... a.    -8 |4x-5| < 13 b.    4x < 18 c.    -8 < 4x < 18 d. ...

info seputar diabetes militus

Info seputar diabetes militus KELAINAN KENCING MANIS KARENA SISTEM ENDOKRIN Pendahuluan Diabetes Mellitus pada anak dan remaja berbeda dengan DM yang terjadi pada masa dewasa. DM pada masa anak dan remaja selalu tergantung pada insulin ( Insulin Dependent Diabetes Mellitus IDDM) DM pada anak dan remaja merupakan salah satu penyakit yang serius oleh karena banyak kasus yang masuk dalam kegawatan, menderita komplikasi ketoasidosis yang mungkin dapat menyebabkan kematian DM pada anak dan remaja juga merupakan suatu penyakit yang dapat mempengaruhi cara hidup keluarga sepanjang kehidupannya. Secara genetik, etiologi dan fisiologi kedua type DM berbeda dalam karakter penyakit sehingga  dapat dilihat perbedaan dalam penampilan klinik nya Perbedaan penampilan klinik IDDM dan NIDDM Angka kejadian IDDM pada laki dan perempuan sama 2012 Di USA sebesar 15 per 100.000anak pertahun. Terdapat perbedaan angka kejadian yang mencolok berdasarkan geografik. Di Asia angka ke...